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Abstract. Numerous architectural monuments throughout Ukraine were once proud and were the center of 

historical events. With a glorious and rich history, but forgotten by people because they are located outside the 

city limits and are not included in well-known tourist routes. Historic buildings are examples of neoclassicism, 

baroque, neo-gothic and many other styles. During Soviet times, they were turned into barracks, chemical storage 

facilities, food and weapon warehouses, and now they are empty and collapsing. A correct and calculated approach 

to reconstruction, restoration and monitoring of their further condition will make it possible to turn such objects 

into the cultural and historical center of a rural agglomeration. This will help maintain historical memory, preserve 

culture and heritage, and also give economic impetus to the development of the area where they are located. 

Leakage of worn-out enclosing structures is the biggest problem of abandoned architectural monuments. This 

causes uneven wetting of the structures. And then the task is posed of how to properly dry such enclosing structures 

and not damage them. All these old building envelopes are colloidal capillary porous bodies (CCPB). Drying of 

such massive structures occurs due to heating. The problem of the optimal heating rate of a massive colloidal 

capillary-porous body is considered. The restrictions that are imposed on the internal thermal stresses in the 

specified body are taken into account, especially at the first low-temperature stage when heating the colloidal 

capillary porous bodies. Due to the temperature distribution over the mass (over the cross-section) of the colloidal 

capillary porous bodies, compressive and tensile stresses arise inside the body. Colloidal capillary porous bodies 

can be destroyed by these stresses, leading to the appearance of various microdefects. 
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Introduction 

Throughout Ukraine, there are many architectural monuments that were once proud and which were 

the epicenter of historical events. With a glorious and rich history, but forgotten by people because they 

are located outside the city limits and are not included in well-known tourist routes. Historic buildings 

are examples of neoclassicism, baroque, neo-gothic and many other styles. During Soviet times, they 

were turned into barracks, chemical storage facilities, food and weapon warehouses, and now these 

buildings are empty and collapsing. A correct and scientifically based approach to reconstruction, 

restoration and monitoring of their further condition will make it possible to turn such objects into the 

cultural and historical center of a rural agglomeration. This will help maintain historical memory, 

preserve cultural heritage, and also give an economic boost to the development of the area where they 

are located. Leaks in worn-out building envelopes are the biggest problem facing abandoned 

architectural monuments. This causes uneven wetting of the structures. And then the task is posed of 

how to properly dry such enclosing structures and not damage them. All these old building envelopes 

are colloidal capillary porous bodies (CCPB). Drying of such massive structures occurs due to heating. 

As is known from [1-15], many researchers have studied the optimal speed of heating of massive bodies 

(including colloidal capillary-porous bodies – CCPB). 

When such bodies are heated, thermal stress arises, which is often the main reason for the limitation 

that limits the heating rate. Especially at the first low-temperature stage, when heating CCPB, its outer 

layers have a temperature above the average by weight (over the cross section), and the temperature of 

the inner layers is significantly lower than the average temperature. Due to this temperature distribution, 

the outer layers of CCPB tend to expand. This expansion is prevented by the inner layers of the body, 

since due to the lower temperature they expand less, so the outer layers of CCPB experience 

compression, and the inner layers experience tension. In accordance with this, compressive and tensile 

stresses arise inside the body. These stresses can lead to the destruction of CCPB and the appearance of 

various microdefects. 

Optimum conditions for the speed of heating of a massive CCPB are taking into account the 

limitations on thermal stress and setting the problem of optimal control. The problem of heating an 

infinite plate (CKPT) with a thickness of 2·s, m is considered. We denote the temperature u (̃τ), 0 ≤ τ ≤ τ0 
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dependent on time τ, s. This function will be a controlling influence. Of practical interest is the case of 

limited ambient temperature. Therefore, we set the following restrictions for u (̃τ). 

 , (1) 

where А2 and А1 – maximum and minimum possible heating temperatures, respectively. 

Next, we will assume that at the initial moment of time the temperature at all points of the plate is 

the same and equal t0 (x,0) = Т0 = const at the coordinate x, m. 

The temperature distribution in the body, which must be obtained as a result of heating, is 

considered to be equal to some constant temperature tз (x) = const, i.e. the task is to change the 

temperature distribution inside the body from the constant Т0 to the constant С. 

We set the origin of coordinates in the center of the plate, since the heat exchange between the 

environment and each of the surfaces occurs in the same way (symmetric problem). With −s ≤ x ≤ s, 

τ > 0;  is a piecewise continuous function of time satisfying condition (1). 

Temperatures А2, А1, Т0, С satisfy the following obvious inequalities: А2 > А1, С > Т0. The latter 

means that the problem of heating CCPB will be considered in the future, but the obtained results can 

easily be used to solve the problem of cooling as well. In addition, we consider the following inequality 

to be satisfied: 

 А1 < С < А2, (2) 

that is, the value of the temperature С to which the CCPB should be heated does not exceed the range 

of the ambient temperature change. 

Materials and methods 

We will introduce the following dimensionless coordinates adopted in heat engineering:  

dimensionless time (Fourier criterion – Fo, in the future we will call φ simply time); a = 𝜆/(cp·ρ) –thermal 

diffusivity, m2·s-1; 𝜆 – thermal conductivity coefficient, W·m-1·K-1; cp – specific heat capacity,  

J·kg-1·K-1; ρ – density, kg·m-3; 𝑙 =  𝑥/𝑠 – dimensionless thickness, –1 ≤ l ≤ + 1; 𝛼  – Bio 

criterion (Bi); α – heat transfer coefficient, W·m-2·K-1;  – dimensionless 

temperature (initial condition criterion); ᴂ  dimensionless temperature 

(criterion of heating asymmetry). 

It follows from (2), that | ᴂ | < 1. We denote the new dimensionless temperature as 

Q(l, φ) = 2[ -C]/( ). 

Let us consider the process of heating a one-dimensional plate (model of an array of CCPB), the 

temperature distribution inside which is described by the thermal conductivity equation. 

  (3) 

with initial and boundary conditions: 

 , (4) 

  (5) 

  (6) 

The main effect must also satisfy the condition: 

 ᴂ ᴂ  (7) 

The thermal stress distribution in the plate is described by the relation [16]: 

  (8) 

where  – stress in CCPB, N·m-2; 

  – coefficient of linear temperature expansion of the body material, K-1; 

  – modulus of elasticity, Pa; 

  – Poisson’s ratio; 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024. 

 

617 

  – average temperature of the body across the mass section, K. 

The diagram of the thermal stress distribution during instantaneous measurement of the temperature 

of the heating medium is shown in Fig. 1. It shows that the greatest tensile stress occurs in the middle 

of the plate at . 

Since the most dangerous tensile stresses during heating (they can destroy a massive CCPB by 

forming microcracks in it), the following limitation is obtained: 

  (9) 

where 𝜎∗ – maximum allowable tensile stress. 

 

Fig. 1. Circuit diagram of distribution of thermal stress with  

instantaneous change in the temperature of the heating medium 

The last condition (9) can be rewritten in dimensionless form for the temperature stress criterion : 

  (10) 

where  – dimensionless parameter. 

Thus, the task of optimal management is to find such a management that, when fulfilling ratios (3-

7), zero distribution is achieved in the minimum time: 

  for all . (11) 

As shown in [15], the task of optimal control in this case can be reduced to an infinite system of 

equations: 

  (12) 

where 

  (13) 

where μk – different real positive solutions of the characteristic equation, (1/b)·μ = ctg μ, 

0 < μ1 < μ2 < μ3… < μk < … 

  – dimensionless variable of integration. 

Differentiating the last equality (13) with respect to 𝜑, we obtain an infinite system of differential 

equations: 

  (14) 

with initial conditions: 

  (15) 

Results and discussion 

Let us now express the temperature stress criterion  in terms of coordinates  of system 

(14), using formula (13). We will get: 

  (16) 
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where 

  (17) 

Accordingly, constraint (10) can be rewritten in the form: 

  (18) 

Thus, the task of optimal heating control of CCPB, taking into account the limitations on thermal 

stress, is formulated as follows. Find such a control  that, subject to the constraints (7) and (18), the 

system (14) is passed from the initial state (15) to the final state (12) in the minimum time . 

This means that the task under consideration is reduced to the optimal control of an infinite system 

of differential equations (equations in the Banach space [15]) when limited to a linear combination of 

phase coordinates (18). 

It is obvious that with the given restriction (18) and the restriction on the control influence  it is 

possible to choose a value of the initial temperature distribution 𝜈 so large in terms of modulus that with 

any admissible control the stress in CCPB will exceed the admissible limit. 

To find this limiting relationship between the value of  and the value of , we substitute 

ᴂ  in (14) and integrate this equation. We substitute the obtained coordinate value into the 

expression for . Then we will have: 

 ᴂ    

Where we will get: 

 ᴂ
 

 (19) 

Fig. 2 shows the graph of the dependence of the maximum permissible value of the absolute value 

of  on the Bio criterion  at and ᴂ  in logarithmic scale. If the point is located above 

the line, the system cannot be transferred to the required state without exceeding the thermal stress 

 of the permissible value 𝜎∗. 

 

Fig. 2. Circuit diagram of distribution of thermal stress with instantaneous  

change in the temperature of the heating medium 

In work [15] it is shown that a good approximation of the problem of optimal heating of a massive 

body is obtained if we consider the “truncated” system of equations (14) with a small number of 

equations . As it was shown, this is explained by the fact that the exponent (or ) inverse of 

the “time constant” in equations (14) grows very quickly in modulus, because: 

   

Here we will limit ourselves to the system of two equations (𝑘 =  2): 

  (20) 

With initial and final conditions: 

  (21) 

Let us assume that: 

  (22) 
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If we denote and , inequality (22) will take the 

form: 

   

When solving our problem, we will limit ourselves to considering the case when . As can be 

seen from the system of equations (20)-(22), if 𝜈 <  0, then it is necessary to find the optimal control 

u  corresponding to the initial conditions . Then the optimal control will be 

equal to . 

Thus, on the phase plane  the task is reduced to constructing the trajectory of the 

characteristic point of the system . The trajectory starts on the bisector of the third quadrant at 

the point  and ends at the origin of coordinates (0, 0). Moving along this trajectory, this point 

must reach the origin of coordinates in the minimum time, without entering the forbidden area lying 

above the straight line: 

  (23) 

For sufficiently small |𝜈| the optimal trajectory will not reach the constraint. Therefore, due to the 

fact that this system is a second-order linear system with real eigenvalues  and  the optimal 

control will have one exception. The switching line in this case is easily calculated by “reverse 

time”  [11]. The parametric control of the switching line is determined by integrating the 

equations of motion (20) at in the negative direction of time with the initial 

conditions . These equations have the form: 

  (24) 

Integrating these equations, we have: 

  (25) 

Excluding the parameter 𝜑 from the last system, we obtain the equation of the switching line 

(Fig. 3): 

  (26) 

 

Fig. 3. Optimal trajectory of the characteristic point of the system on the phase plane : 

lines a, b, c, d are variants of the possible trajectory of the characteristic point,  

at different initial coordinates 

As 𝜈 increases, a moment will come when the optimal trajectory will touch the limit line. Let us 

calculate the coordinates of this point of contact. By integrating the system (20), we first determine the 

equation of the optimal trajectory  under the initial conditions . 

  (27) 

Excluding  from (27), we obtain the required equation: 

  (28) 
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The coordinate 𝑥1of the desired point of contact A (Fig. 3) and the maximum value of the parameter 

, at which the optimal trajectory will touch the limit line for the first time, can be found from the 

system of equations: 

  (29), (30) 

From the first equation (29), we determine: 

  (31) 

Let us substitute the specific expression in (30). Then we get: 

  (32) 

From here: 

 . (33) 

Using equation (31), it is easy to find: 

  (34) 

Thus, with , the optimal trajectory does not reach the limit line. 

When  the optimal trajectory (line a, Fig. 3) only touches the constraints. The optimal 

process in this case is shown in Fig. 4a. 

When  the characteristic point “rests” against the restriction, and in order not to go beyond 

the permissible area, it must move along the restriction line to point A (line b, Fig. 3). The conditions 

under which the characteristic point can move along the straight line (23) have the form: 

  (35) 

From here 

  (36) 

or 

  (37) 

In order to find a clear dependence of control on time in a given section, the last relation for 

 must be substituted into the initial system of equations (20). These equations are linear equations 

and their solutions are easy to find given the appropriate initial conditions. Having determined the 

explicit dependences of  and  from these equations and substituting them into equation (37), 

we will find the explicit dependence of . Intermediate calculations are not given in the work. 

The control  determined by formula (37) must be subject to the main constraint (7). On the 

segment BA, the characteristic point can be kept on the limit line without entering the forbidden area 

with the help of admissible control. Allowable for movement, the segment BA of the straight limit is 

determined by the intersection of the limit line itself with two straight lines 

 (Fig. 3). 
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Point B corresponds to the minimum value , determined from the graph in Fig. 3, in 

which the characteristic point does not go beyond the permissible area. 

Thus, the ray corresponding to the bisector of the third quadrant is divided by the points 

into three parts. 

If the initial point  lies further from the origin of coordinates than the 

point , then there is no optimal control. 

If the initial point coincides with the point  (line d, Fig. 3), then the optimal process has 

the form shown in Fig. 4 d. 

If the initial point lies between the points  and  then the optimal process has 

the form shown in Fig. 4 b, c. 

Fig. 4a shows the type of optimal control when the stress limit is not reached. 

 

Fig. 4. Appearance of optimal control 𝒖 (𝝋)for different initial conditions (𝒙𝟏(𝟎), 𝒙𝟐(𝟎)):  

a) ; b) ; c) ; d) ;  

Conclusions 

A solution to the problem of optimal heating rate of a massive CCPB has been obtained. In 

accordance with Fig. 2, the dependence of the modulus Pmin on the Bio criterion (b) was established. 

This dependence has the character of a monotonically decreasing function, i.e., when increasing the 

parameter Bio from 0,02 to 20, the value of the modulus Pmin falls from 305.7 to 3.57. The curve Pmin(b) 

itself serves as a boundary that divides the whole plane of parameters Pmin b into upper and lower parts 

relative to the curve. If the parameters of the system (medium, material) lie in the upper region (above 

the curve), then it cannot be transferred to the required state without applying an appropriate external 

thermal stress exceeding some threshold value. If the parameters of the system lie in the lower region 

(below the curve), then it is not necessary to apply additional thermal stress from outside. Without any 

compulsion, the system itself will move to the required state. The restrictions that are imposed on the 

internal thermal stresses in the specified body were taken into account, especially at the first low-

temperature stage of heating. This means that the task is reduced to the optimal control of an infinite 

system of differential equations when limited to a linear combination of phase coordinates. Taking into 

account the given restrictions, it is possible to choose such a value (modulo) of the initial temperature 

distribution ν and determine the optimal heating control trajectory. For sufficiently small  the optimal 

control trajectory  does not reach the limits imposed on the thermal stress that occurs in a massive 

CCPB and has a single switching . When the optimal trajectory just touches the 

constraint. Optimal control  corresponds to Fig. 4a and has one switch. When the 

characteristic point “rests” on the restriction, and in order not to go beyond the permissible area, it must 

move along the straight line of the restriction and point A (Fig. 3). Optimal control  corresponds to 

Fig. 4 b, c and has three switching points. When the characteristic point does not go beyond 

the permissible area. At the same time . Optimal control  corresponds to 

Fig. 4 d and has two switching points. When there is no optimal control  taking into 

account the restrictions imposed on the thermal stress in CCPB. 
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